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ON THE GIBBS PHENOMENON IV: 
RECOVERING EXPONENTIAL ACCURACY 

IN A SUBINTERVAL FROM A GEGENBAUER PARTIAL SUM 
OF A PIECEWISE ANALYTIC FUNCTION 

DAVID GOTTLIEB AND CHI-WANG SHU 

ABSTRACT. We continue our investigation of overcoming the Gibbs phenome- 
non, i.e., to obtain exponential accuracy at all points (including at the disconti- 
nuities themselves), from the knowledge of a spectral partial sum of a discon- 
tinuous but piecewise analytic function. We show that if we are given the first 
N Gegenbauer expansion coefficients, based on the Gegenbauer polynomials 
Ck(x) with the weight function (1 - X2)#P'/2 for any constant ,u > 0, of 
an LI function f(x), we can construct an exponentially convergent approxi- 
mation to the point values of f(x) in any subinterval in which the function 
is analytic. The proof covers the cases of Chebyshev or Legendre partial sums, 
which are most common in applications. 

1. INTRODUCTION 

In this paper we continue our investigation of overcoming the Gibbs phe- 
nomenon, i.e., recovering pointwise exponential accuracy at all points, includ- 
ing at the discontinuities themselves, from the knowledge of a spectral partial 
sum of a discontinuous but piecewise analytic function, which we started in [4, 
5 and 6]. 

Spectral approximations, such as the Fourier approximation based upon trigo- 
nometric polynomials for periodic problems, and the Chebyshev, Legendre or 
the general Gegenbauer approximation based upon polynomials for nonperiodic 
problems, are exponentially accurate for analytic functions [3, 2]. However, for 
discontinuous but piecewise analytic functions, the spectral partial sum approxi- 
mates the function poorly throughout the domain. Away from the discontinuity 
only first-order accuracy is achieved. Near the discontinuity there are 0(1) os- 
cillations which do not decrease with N, the number of terms retained in the 
spectral sum. This is known as the Gibbs phenomenon. 

Our framework in [4, 5 and 6] to overcome the Gibbs phenomenon and 
obtain exponential accuracy at all points for piecewise analytic functions relies 
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heavily on using the Gegenbauer polynomials Ci(x), which are orthogonal in 
[-1, 1] with the weight function (1 - x2)-1 , for large A . We assume that 
the first -N < k < N Fourier coefficients, or the first 0 < k < N Legendre 
coefficients, of a discontinuous but piecewise analytic function, are given. The 
procedure consists of two steps: 

1. Using the given spectral partial sum of the first N terms, to recover 
the first m N Gegenbauer expansion coefficients, based on a subinterval 
[a, b] c [-1, 1] in which the function is presumably analytic, with exponential 
accuracy. This can be achieved for any L1 function, as long as we choose A in 
the weight function of Gegenbauer polynomials to be proportional to N. The 
error incurred at this stage is called the truncation error. 

2. For an analytic function in [a, b], proving the exponential convergence 
of its Gegenbauer expansion, when the parameter A in the weight function is 
proportional to the number of terms retained in the expansion. The error at 
this stage is labeled the regularization error. 

In [6] we demonstrated this procedure in the case of a discontinuous but 
piecewise analytic function, provided its Fourier or Legendre spectral partial 
sum is given. 

The proof of the Legendre case in [6] is based upon first expanding the 
Legendre polynomial Pk(x) = C,2 (x) into its Fourier series: 

00 

(1.1) Pk(X)= Eale 
1=-00 

It was essential in this proof that the Fourier expansion for the Legendre poly- 
nomial PN(x), for large N, contains lower terms that decay exponentially with 
N: 

(1.2) laNI < Amin(1 (e2N)) 

Unfortunately, it seems that this fact is true only for Legendre polynomials, 
probably because their weight function is special (- 1) . It seems not true for 
other Gegenbauer polynomials, such as Chebyshev polynomials. In an earlier 
version of [6], we quoted a formula (7.354, page 836 of [7]) to this effect for 
Chebyshev polynomials. However, it is doubtful that formula 7.354 of [7] is 
correct. 

In this paper, we will consider the case of general Gegenbauer spectral meth- 
ods, with Chebyshev and Legendre methods as special cases. We assume that 
f(x) is an L1 function on [-1, 1] and analytic in a subinterval [a, b] c 
[-1, 1]. We also assume that the Gegenbauer partial sum of f(x), based upon 
the Gegenbauer polynomials CQ(x) with the weight function (1-x2)8-: for 
any constant ,u > 0, over the full interval [-1, 1], is known. The objective 
is to recover exponentially accurate point values over the subinterval [a, b] of 
analyticity. 

We will follow the same path as in [6]. Basically we will show that the first 
0 < k < N Gegenbauer expansion coefficients, based on the Gegenbauer poly- 
nomials CkP(x) for any constant u > 0, contain enough information such that 
a different, rapidly converging Gegenbauer expansion in the subinterval [a, b], 
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with the parameter A in the weight function (1 - 1 being proportional to 
N, can be constructed. As before, we will separate the analysis of the error into 
two parts: truncation error and regularization error. Truncation error measures 
the difference between the exact Gegenbauer coefficients with A) N, and those 
obtained by using the spectral partial sum. This will be investigated in ?3. The 
regularization error measures the difference between the Gegenbauer expansion 
using the first few Gegenbauer coefficients with A) N, and the function itself 
in a subinterval [a, b], in which the function is assumed analytic. This error 
is estimated in [6] and we will simply quote the result in ?4. The results are 
summarized in Theorem 4.3, and some remarks are also given in ?4. Section 5 
contains two numerical examples to illustrate our results. In ?2 we collect some 
useful properties of Gegenbauer polynomials to be used later. 

Throughout this paper, we will use A to denote a generic constant or at most 
a polynomial in the growing parameters, as will be indicated in the text. It may 
not be the same at different locations. 

2. PRELIMINARIES 

In this section we collect some useful results about the Gegenbauer polyno- 
mials, to be used in later sections. We rely heavily on the standardization in 
Bateman [1]. 

Definition 2.1. The Gegenbauer polynomial C,A(x), for A > 0, is defined by 

(2.1) (1 -x ) iC(x)= (An) [(1 -x2)n+A-] 

where G(l, n) is given by 

(-) n F(). + I)F(n + 2A)) 
(2.2) G(A, n) = 2ln!(2)F(n+ 2) 

for A > O, by 

(2.3) G(_ n)n= - 
2n-I l'n(n + ') 

for A = 0 and n > 1, and by 

(2.4) G(O, 0) = 1 

for A = 0, n = 0. Notice that by this standardization, Cn?(x) is defined by 
(see[1]) 

(2.5) -Co(X) = lim =-T(x) n > 1; CO(x) = 1, 

where Tn(x) are the Chebyshev polynomials. 0 

Formula (2.1) is also called the Rodrigues formula [1, page 175]. 
Under this definition we have, for A > 0, 

(2.6) Cn"(l) - J7(n + 2A) 
n!F(21A) 

and 
{X 7' CnAvXI < Cn"(1) -I < Y < 1. 
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The Gegenbauer polynomials are orthogonal with respect to their weight func- 
tion (1 -x 

(2.8) j(I - x2)-i Ck(x)CA(x) dx =k, hi 

where, for A > 0, 

(2.9) hi =~~ ~ rCAI)(A)(n + A)' 

We will need to use heavily the asymptotics of the Gegenbauer polynomials 
for large n and A. For this we need the well-known Stirling formula 

(2.10) (27r)Ixx+Ie-x < F(x + 1) < (27irxx+Ie-xe +i, x > 1. 

Lemma 2.2. There exists a constant A independent of A and n such that 

(2.11.) A - I Al 
C-n(l) < h-I <A( A)CA1) 

The proof follows from (2.9) and Stirling's formula (2.10). 
We also need the following lemma, which is easily obtained from the 

Rodrigues formula (2.1). 

Lemma 2.3. For any A > 1 we have 

d 
2____C__X_____n _CA-I X) (2.12) dx[( -X ) C(x)] - G(- , n)+ (1-X2) Cn+l(x). 

The proof follows from taking one derivative d on both sides of the 
Rodrigues formula (2.1), and then using it again on the right-hand side. o 

Finally, we will need to use the following formula [1, page 176]: 

(2.13) Cn (x)- 2(n= ) * [C1 (x)-C l (x)], 

which is true for all ,u > 0. 

3. TRUNCATION ERROR IN A SUBINTERVAL 

Consider an arbitrary LI function f(x) defined in [-1, 1]. Suppose that 
the first 0 < k < N Gegenbauer coefficients, based upon the Gegenbauer poly- 
nomials Cku(x) with the weight function (1 - x2)8-+ for any constant u > 0, 
over the full interval [-1, 1], are given: 

(3.1) fll(k) = hu (j_X2),u jCku(x)f(x)dx, O<ck<cN. 

We are interested in finding the Gegenbauer expansion of f(x), with Ai N, 
based on a subinterval [a, b] c [-1, 1]. We start by introducing the local 
variable (. 
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Definition 3.1. The local variable 4 is defined by 

(3.2) x = x(4) = 84 + 

where 

(33)= b-a b+a 
2' 3- 

Thus, when a < x < b, we have -1 < < 1. o 

We consider functions f(x) satisfying 

Assumption 3.2. jfP(k)l < A independent of k. o 

We remark that if f(x) is an L1 function this assumption is fulfilled. 
Since we know the first N+ 1 Gegenbauer coefficients, fP (k) for 0 < k < N, 

we define the Gegenbauer partial sum 
N 

(3.4) f(X) = Zf(k) Ck (x). 
k=O 

Note that fN#(x) does not converge fast to f(x) if there exist discontinuities 
inside the domain. 

The function f(x) has also a Gegenbauer expansion in a subinterval [a, b], 
with A , N. With (, e and 3 defined in (3.2)-(3.3), we have 

00 

(3.5) f(6 + 3) = E f()CI (), -1 ' < ? 1, 
1=0 

where the Gegenbauer coefficients Ji(l) are defined by 

(3.6) i A(l) = j(A l _2)A-j Cjg)f(g+ +3)dX. 

Of course, we do not have JA(l) at our disposal, but only an approximation 
based on the Gegenbauer partial sum fN(x); thus we have 

(3.7) 4A(l) = j( N + 

How well do kg(l) approximate JA(l) ? To answer this question we define: 

Definition 3.3. The truncation error is defined by 

(3.8) TE(1, m, N, e) = max Z(Je(') - -1~ 
I1=0 

where JA(l) are defined by (3.6) and kA(l) are defined by (3.7). o 

The truncation error is the measure of the distance between the true Gegen- 
bauer expansion in the interval [a, b] and its approximation based on the 
Gegenbauer partial sum in [-1, 1]. 

We first have the following lemma: 
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Lemma 3.4. The truncation error can be estimated by 
(3.9) 

TE(A, m, N, e) <E I l(q)l E hAL( 4)A-ClA(4) Cq (84 +5 )d| 
q=N+1 1=0 i- 

Proof. From (3.6) and (3.7) we have 

)~ ~ ~~~~~( _e (I e()=h 1 2).I-' CA g)( (pg + ,3, (g (3.10) JA(l) - k.( = 
hA 

j(N 3 ~ + 3)~ 

Substituting (3.10) into (3.8), recalling (2.7) and 
00 

(3.11) (8+ )f( + fl) = , f(q) Cq (8, + 6), 
q=N+1 

we obtain (3.9). o 

For simplicity of notations we denote 

(3.12) F' 1(1 q + )d 

In order to estimate this term, we start with the following 

Lemma 3.5. If we denote 

Fq'1 
(3.13) IA,I= Fq^ 

where G(A, 1) is defined by (2.2)-(2.4), then we have the following recursive 
formula: 

(3.14) I -,/ A > 1 q > 1. 

Proof. By the definition of Ii'l in (3.13)-(3.12), we have 

zAI= G(t 1)1 42Aiz( Cle+3)dX 
1 1 

G(A, 1) 2(q + 4u)e 

J ( I-42)AC-d2 [CI (eC + 3) -C" + (e+)]dX 

2G(A, l)(q + u)8 

L 1111 ~[(1 - 2)A-7 Cjl g)][CI u(e + 3) Cq+1(e + 

1 2G(AX- 1, 1+ 1)(q + ),e 

.11 (1 - 42)4- C/l I1( )[Cql~I(eg + ) - Cq+I(8e + 6)]dX 

- 1 [fA-,1l+1 .I-l,l+l 

2(q + JU)g q- I q+1J' 
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where we have used (2.13) for the second equality, integration by parts for the 
third equality (the boundary terms vanish because of the term (1 - 42)A- with 
A > 1), formula (2.12) for the fourth equality, and the definition (3.12)-(3.13) 
for the last equality. o 

We can now obtain the following recursive estimate for IqA,I 

Lemma 3.6. The IqA,I defined by (3.13) satisfies the following estimate: 

(3.15) II-qI- 1r(q+,u+l j max iIA j+jl, j<min(A, q). 
eirF(q + p+l) q-j?p?q+j 

Proof. We use induction on j. The estimate is clearly valid for i = 0. Assume 
that it is valid for j =jo < min(l, q) - 1; then 

F< (q +u + I - Jo) max A-jo + , 

-cioF11(q + ii + 1) q-jo?p?q+jo 

F(q +i + j-Io) I| IA-jo-,lI+jo+1 A-jo-l/+jo+I1 
ejor,(q + ,U + l) q-jO<p<q+jo 2(p +p)e 'p-1 '+ 

F(q +,u + I - jo) 
8EO]F(q + #+ ) 

max jI~o ~I +Jo+ Ij + I 2A-1Jo-lIl+Jo+lj] 2(q - Jo + u)e q-o?<p?q+jo 

_(q + g- jo) m-Io -lI+Io+lI 

-EJo+ IF(q + # + 1) q-jo- I <p<q+jo+ I P 

where we have used (3.14) for the second inequality. All other steps are simple 
inequalities. 

This finishes the induction. 0 

From the previous lemma we can get the following estimate: 

Lemma 3.7. For Fq l defined in (3.12) with A < q we have the following esti- 
mate: 

(3.16) qF"1 < eA?(q - A) fG(O, il) 
qW 9I(q) IG(O, 1+ ))I 

where A grows at most as q2I-I. 

Proof. For simplicity, and without loss of generality, we assume l is an integer. 
Since A < q, we can take j = A in (3.15) to arrive at 

II ll <Fr(q+g+ 1 -l) max I I+ < -(q l) max p A+)j 
,eAi](q + g+ I) q-A<p<q+A P - e(q) q-A<p<q+A p 

By the definition (3.12)-(3.13), we have, for q - A < p < q +1, 
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O,I+AI = 
1 

||( 
-) C1)-7C (4) Cp"(,e + 6) d4 

C,? A ( 1) CpI ( 1) t 1-2) - dX 
- IG(O, I + 4 ( 

O 

F(l + A) _ _ _ 1 2p1 

<(1 + i)! *p!]F(2y) * G(O, I + ,A)l |(1 - dE 

<A 
IG(O,1+ A)I' 

where for the second inequality we have used (2.7) and for the third inequality 
we have used (2.6). Clearly, A is a constant if ,u < 2 and A grows at most as 
q2"-1 if u > 2 . Invoking (3.13) again, we obtain (3.16). 0 

Using Stirling's formula, we can now easily get: 

Lemma 3.8. For 1 < m < N and q > N, we have 

(3.17) IF4A"Il <AX(m +2A)m)2* 11 

where A again grows at most as (m + A)+ q2I. 

Proof. Starting from (3.16) and using the definition (2.2)-(2.3), we obtain 

JF_ (+ (+A I2(q - A) +G(F( 1) + 
q --~ 01F(q) JG(O ,1+ A)l 

er(q) 211!F(2A)F(l + i + 2) 2 

A(q -) F(A))F(l + 2A)2A 

r(q - A) F(A))F(m + 2A)2A 
- 1F(q) m!rF(2A) 

<A (q _ A)q-Ae-(q-A) AAe-A(m + 2A)m+2Ae-(m+2A)2A 

eAqqe-q mme-m(2 )2Ne-2N 

(m + 2A)m+2A 1 
(2,eA)Amm 

where we have used (2.2)-(2.3) in the second inequality, the monotonicity with 
respect to / in the fourth inequality, and Stirling's formula (2.10) for the fifth 
inequality. 0 

We are now ready for the main theorem of this sectioGn: 

Theorem 3.9. Let the truncation error be defined in (3.8). Let A = aeN and 
m=fleN with 0< a, f< 1; then 
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(3.18) TE(aeN, &iN, N, e) ? A ( 2a)&+afl) 
where A grows at most as N1+2,. In particular, if a = /1 < 22 then 27 

(3.19) TE(aeN, aeN, N, e) < A qN, 

where 

(3.20) q= (27) < 1. 

Proof. The theorem follows from (3.9), the Assumption 3.2, (2.11), and 
(3.17). E 

4. REGULARIZATION ERROR AND THE MAIN THEOREM 

The second part of the error, which is called the regularization error and is 
caused by using a finite Gegenbauer expansion based on a subinterval [a, b] c 
[-1, 1], to approximate a function f(x) which is assumed analytic in this 
subinterval, has been studied in [6]. We will thus just quote the result. 

We assume that f(x) is an analytic function on [a, b] satisfying 

Assumption 4.1. There exist constants p > 1 and C(p) such that, for every 
k > , 

(4.1) ma dkf k 
a<x<b dxk() ?(P)pk 

This is a standard assumption for analytic functions. The quantity p is the 
distance from [a, b] to the nearest singularity of f(x) in the complex plane 
(see for example [8]). Let us consider the Gegenbauer partial sum of the first 
m terms for the function f(e4 + c): 

m 
(4.2) fm (" ) = Zfl (1) Cl) 

1=0 

with X, e and 5 defined by (3.2) and (3.3), and the Gegenbauer coefficients 
based on [a, b] defined by 

(4.3) feh^l) =1 j (I _ 42)A-1 pg + )CzI(4)d4. 

The regularization error in the maximum norm is defined by 

(4.4) RE(A, m, e) = max f(e4 + a) - E f'l ()C1 ) 
-1?c~~~?1 1=0 

We have the following result for the estimation of the regularization error, 
when A m [6]: 
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Theorem 4.2. Assume A = ym, where y is a positive constant. If f(x) is 
analytic in [a, b] c [-1, 1] satisfying Assumption 4.1, then the regularization 
error defined in (4.4) can be bounded by 

(4.5) RE(ym, m, e) < Aqm, 

where q is given by 

_ e(1_+_2y) 1+2y 

(4.6) q = 
p21l+2yyy( l + Y) l+Y 

which is always less than 1. In particular, if y = 1 and m = &ieN, where ,B is 
a positive constant, then 

(4.7) RE(/IN, fIN, e) < Aq N 

with 

(4.8) q= (27e 

We can now combine the estimates for truncation errors and regularization 
errors to obtain the following main theorem of this paper. 

Theorem 4.3 (Removal of the Gibbs Phenomenon for the subinterval case of 
Gegenbauer partial sum). Consider an L1 function f(x) on [-1, 1], which is 
analytic in a subinterval [a, b] c [- 1, 1] and satisfies Assunmption 4.1. Assume 
that the first N + 1 Gegenbauer coefficients 

f4 (k) j'(I - x2)' Ck,'(x) f(x) dx, 

for p > 0, are known. Let 4A(l), 0 < 1 < m, be the Gegenbauer expansion 
coefficients, defined in (3.7), based on the subinterval [a, b], of the Gegenbauer 
partial sum fN(x) in (3.4). Then for A = m = flN with ,B < 2 we have 

27 

m 
(4.9) max f(eg +3) - Z e(l)C/'(E) < A(q N + qeN) 

1=0 

where 

qT =(2 )< 1 qR = (32p) <1, 

and A grows at most as N'+2u . 

Proof. Just combine the results of Theorems 3.9 and 4.2. 0 

We now make two remarks. 

Remark 4.3. Comparing with the Legendre case in [6], we can see that the 
current proof is less sharp (missing a factor of I in the truncation error qT). 
The main loss in this sharpness is in the estimate (3.15). 

Remark 4.4. No attempt has been made to optimize the parameters. 
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5. NUMERICAL RESULTS 

In this section we give two numerical examples to illustrate our result. We 
will test Chebyshev series because these are used most often in practice. Notice 
that the Chebyshev polynomials are just Gegenbauer polynomials with ,u = 0 
modulo a constant: Tk(x) =k C (x) . 

Example 5.1. We take the simple step function 

(1 if a<x < b 
(5.1) f(x) = 1 otherwise 

and assume that we know the first N + 1 Chebyshev coefficients of f(x): 

(5.2) f?(k) =-2 (1-x2 )Tk(x)f(x)dx, O < k < N, 

where 

(5.3) 
2 if 

kC={O 
(~~~~~~~C I if k > 1. 

We then form the Chebyshev partial sum 

N 

(5.4) IN(x) = Z (k)Tk(x) 
k=O 

and then compute the approximate Gegenbauer expansion coefficient based on 
the subinterval [a, b] defined by (3.7): 

(5.5) k (l) = AJ(1 J2NO (8( + 6)d4. 

With these Gegenbauer coefficients, we can finally compute the uniformly 
accurate approximation on [a, b] defined by 

m 

(5.6) gA (X) = k'6A (l) Cl) 
1=0 

Numerical experiments (for various functions) seem to indicate that 

(5.7) m = O.leN, A = 0.2eN 

are good choices. Notice that in our proof we did not attempt to optimize these 
parameters. For consistency we will use (5.7) for both examples. 

For this special function (5.1), there is no regularization error. Hence all 
we see is the truncation error. In Fig. 1, top, we show the errors of a middle 
subinterval [a, b] = [-0.5, 0.5], and in Fig. 1, bottom, we show that of a one- 
sided subinterval [a, b] = [0, 1]. We can clearly see good convergence for both 
cases. 
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100 

1o-1 

10-2 

10-3 N=20 

10-4 N=40 

1o-6 N=80 
10-7 

1io-8 

10-9 

lo10-1 \/= X 

l-12 r1f 

lo-12 
1o-13 

1014 1. 

-0.4 -0.2 0.0 0.2 0.4 0.6 

iOQ 
10?1 
lo-' 

10-2 N=20 
io-3 

io-5 ~~~~~N=40 

10-7 

10-8 

lo0--',,,'''-NS' . 10-10N16 

1o-11 

1 0-12 

1 o-14 

0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 1. Errors in log scale, f(x) defined by (5.1). [a, b] = 
[-0.5, 0.5] (top) and [a, b] = [0, 1] (bottom). A = 0.2eN 
and m = O.1eN. N= 20, 40, 80, 160 

Since there is no regularization error for this example, and the truncation 
error is smaller for small m, we also plot the errors for m = 1 and A = 0.2eN 
in Fig. 2. We can see that the errors are now much smaller than those in Fig. 
1. Of course for general functions, regularization errors must balance with 
truncation errors, so we cannot expect m = 1 to work for the general case. 
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10-2 N=20 
10-3 

10-4 
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1 o-8 
io-9 
10-10 

1 -11 

1-12 

1o-13 N= 160 
10-14 

0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 2. Errors in log scale, f(x) defined by (5.1). [a, b] = 

[-0.5, 0.5] (top) and [a, b] = [0, 1] (bottom). A = 0.2eN 
and m=1. N=20,40,80,160 

Example 5.2. In the second example we take the following function: 

f sin(cos(x)) if a < x < b, 
(5.8) f(x) = 10ohrie 

Again, we assume that we know the first N + 1 Chebyshev coefficients of 
f(x) defined by (5.2). 
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FIGURE 3. Errors in log scale, f(x) defined by (5.8). [a, b] 
[-0.5, 0.5] (top) and [a, b] = [0, 1] (bottom). 2A = 0.2eN 
and m =0. LeN. N =20, 40, 80, 160 

This time both truncation error and regularization error exist. We again pick 
two cases with middle as well as one-sided subintervals. From Fig. 3 we can see 
similar results as in the previous example, Fig. 1. 

These examples illustrate well the good convergence behavior of our ap- 
proach. 
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